Relationship between proton motive force and motility in Spirochaeta aurantia

Author:

Goulbourne E A,Greenberg E P

Abstract

The effects of various metabolic inhibitors on the motility of Spirochaeta aurantia were investigated. After 15 min in sodium arsenate buffer, 90% of cells remained motile even though adenosine triphosphate levels dropped from 5.6 to 0.1 nmol/mg (dry weight) of cells. After 70 min in sodium arsenate, 5% of cells were motile. Addition of phenazine methosulfate plus ascorbate at this time resulted in motility of 95% of cells, but adenosine triphosphate levels remained at 0.1 nmol/mg of cell dry weight. Carbonyl cyanide-m-chlorophenyl hydrazone rapidly (within 1 min) and completely inhibited motility of metabolizing cells in potassium phosphate buffer. However, after 15 min in the presence of carbonyl cyanide m-chlorophenyl hydrazone the cellular adenosine triphosphate level was 3.4 nmol/mg (dry weight) of cells, and the rate of oxygen uptake was 44% of the rate measured in the absence of carbonyl cyanide m-chlorophenyl hydrazone. Cells remained motile under conditions where either the electrical potential or the pH gradient across the membrane of S. aurantia was dissipated. However, if both gradients were simultaneously dissipated, motility was rapidly inhibited. This study indicates that a proton motive force, in the form of either a transmembrane electrical potential or a transmembrane pH gradient, is required for motility in S. aurantia. Adenosine triphosphate does not appear to directly activate the motility system in this spirochete.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference54 articles.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3