Affiliation:
1. Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, Maryland 20850
Abstract
ABSTRACT
Hydrogenases are enzymes involved in the bioproduction of hydrogen, a clean alternative energy source whose combustion generates water as the only end product. In this article we identified and characterized a [NiFe] hydrogenase from the marine bacterium
Alteromonas macleodii
“deep ecotype” with unusual stability toward oxygen and high temperature. The
A. macleodii
hydrogenase (HynSL) can catalyze both H
2
evolution and H
2
uptake reactions. HynSL was expressed in
A. macleodii
under aerobic conditions and reached the maximum activity when the cells entered the late exponential phase. The higher level of hydrogenase activity was accompanied by a greater abundance of the HynSL protein in the late-log or stationary phase. The addition of nickel to the growth medium significantly enhanced the hydrogenase activity. Ni treatment affected the level of the protein, but not the mRNA, indicating that the effect of Ni was exerted at the posttranscriptional level. Hydrogenase activity was distributed ∼30% in the membrane fraction and ∼70% in the cytoplasmic fraction. Thus, HynSL appears to be loosely membrane-bound. Partially purified
A. macleodii
hydrogenase demonstrated extraordinary stability. It retained 84% of its activity after exposure to 80°C for 2 h. After exposure to air for 45 days at 4°C, it retained nearly 100% of its activity when assayed under anaerobic conditions. Its catalytic activity in the presence of O
2
was evaluated by the hydrogen-deuterium (H-D) exchange assay. In 1% O
2
, 20.4% of its H-D exchange activity was retained. The great stability of HynSL makes it a potential candidate for biotechnological applications.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献