Affiliation:
1. Department of Veterinary and Biomedical Sciences
2. Center for Biotechnology, University of Nebraska, Lincoln, Nebraska 68583-0905
Abstract
ABSTRACT
NAD(H)-dependent
l
-alanine dehydrogenase (EC 1.4.1.1) (Ald) catalyzes the oxidative deamination of
l
-alanine and the reductive amination of pyruvate. To assess the physiological role of Ald in
Mycobacterium smegmatis
, we cloned the
ald
gene, identified its promoter, determined the protein expression levels, and analyzed the combined effects of nutrient supplementation, oxygen availability, and growth stage on enzyme activity. High Ald activities were observed in cells grown in the presence of
l
- or
d
-alanine regardless of the oxygen availability and growth stage. In exponentially growing cells under aerobic conditions, supplementation with alanine resulted in a 25- to 50-fold increase in the enzyme activity. In the absence of alanine supplementation, 23-fold-higher Ald activities were observed in cells grown exponentially under anaerobic conditions. Furthermore,
M. smegmatis ald
null mutants were constructed by targeted disruption and were shown to lack any detectable Ald activity. In contrast, the glycine dehydrogenase (EC 1.4.1.10) (Gdh) activity in mutant cells remained at wild-type levels, indicating that another enzyme protein is responsible for the physiologically relevant reductive amination of glyoxylate. The
ald
mutants grew poorly in minimal medium with
l
-alanine as the sole nitrogen source, reaching a saturation density 100-fold less than that of the wild-type strain. Likewise, mutants grew to a saturation density 10-fold less than that of the wild-type strain under anaerobic conditions. In summary, the phenotypes displayed by the
M. smegmatis ald
mutants suggest that Ald plays an important role in both alanine utilization and anaerobic growth.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献