Mapping of an Internal Protease Cleavage Site in the Ssy5p Component of the Amino Acid Sensor of Saccharomyces cerevisiae and Functional Characterization of the Resulting Pro- and Protease Domains by Gain-of-Function Genetics

Author:

Poulsen Peter1,Lo Leggio Leila2,Kielland-Brandt Morten C.1

Affiliation:

1. Carlsberg Laboratory, DK-2500 Copenhagen Valby, Denmark

2. Centre for Crystallographic Studies, Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

Abstract

ABSTRACT Ssy5p is a 77-kDa protein believed to be a component of the SPS amino acid sensor complex in the plasma membrane of Saccharomyces cerevisiae . Ssy5p has been suggested to be a chymotrypsin-like serine protease that activates the transcription factor Stp1p upon exposure of the yeast to extracellular amino acid. Here we overexpressed and partially purified Ssy5p to improve our understanding of its structure and function. Antibodies against Ssy5p expressed in Escherichia coli were isolated and used to detect Ssy5p processing in S. cerevisiae cells. Partial purification and N-terminal sequencing of processed Ssy5p revealed in vivo cleavage of Ssy5p between amino acids 381 and 382. We also isolated constitutively signaling SSY5 mutants and quantified target promoter activation and Stp1p processing. One mutant contained an amino acid substitution in the prodomain, whereas three others harbored amino acid substitutions in the protease domain. Dose-response analysis indicated that all four mutants exhibited increased basal levels of Stp1p processing. Interestingly, whereas the three constitutive mutants mapping to the protease domain of Ssy5p exhibited the decreased 50% effective concentration (EC 50 ) characteristic of constitutive mutations previously found in Ssy1p, Ptr3p, and Ssy5p, the EC 50 of the mutation that maps to the prodomain of Ssy5p remained essentially unchanged. In a model of Ssy5p derived from its similarities with α-lytic protease from Lysobacter enzymogenes , the sites corresponding to the mutations in the protease domain are clustered in a region facing the prodomain, suggesting that this region interacts with the prodomain and participates in the conformational dynamics of sensing.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3