Intracellular accumulation of azithromycin by cultured human fibroblasts

Author:

Gladue R P1,Snider M E1

Affiliation:

1. Central Research Division, Pfizer, Inc., Groton, Connecticut 06340.

Abstract

Azithromycin was shown to achieve high concentrations in human skin fibroblasts. Intracellular penetration occurred rapidly (10 micrograms/mg of cellular protein after 3 h) and then increased progressively over a 3-day period; azithromycin accumulated up to 21 times more than erythromycin (61.1 versus 2.9 micrograms/mg of protein). Uptake was dependent on the extracellular concentration, was inhibited at 4 degrees C, did not occur in nonviable cells, and was reduced by a low pH. Intracellular accumulation was not affected by the metabolic inhibitor 2,4-dinitrophenol or sodium fluoride or by the nucleoside transport inhibitor 2-chloradenosine. Once concentrated in cells, azithromycin remained intracellular and was released slowly in the absence of extracellular drug, compared with erythromycin (17 versus 78% released after 1 h). After 48 h of incubation in drug-free medium, 27% of the initial amount of azithromycin remained cell associated. The release of azithromycin was not affected by various monokines reported to stimulate fibroblasts (interleukin-1 or tumor necrosis factor) or by exposure to bacteria. Incubation of azithromycin-loaded fibroblasts with human polymorphonuclear leukocytes resulted in a higher intracellular accumulation of azithromycin in polymorphonuclear leukocytes than in cells incubated with free nonintracellular azithromycin for the same time (8.3 versus 2.2 micrograms/ml after 2 h), suggesting a more efficient or rapid uptake through cell-to-cell interaction. The widespread distribution of fibroblasts in tissues suggests a potential for these cells, and possibly other lysosome-containing tissue cells, to serve as a reservoir for azithromycin, slowly releasing it for activity against extracellular organisms at sites of infection and passing it to phagocytes for activity against intracellular pathogens and potential transport to sites of infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3