UV inactivation of the biological activity of defective interfering particles generated by vesicular stomatitis virus

Author:

Bay P H,Reichmann M E

Abstract

UV inactivation of vesicular stomatitis virus and its defective interfering (DI) particles was measured in order to obtain the target size for interference. In the case of DI particles whose genomes mapped at the 5' end of the virion RNA, this target size corresponded to the entire DI particle RNA molecule regardless of whether it amounted to 10, 30, or 50% of the viral genome. These data were interpreted as demonstrating that both termini of the DI particle RNAs were required for their replication and for interference with virion RNA replication. The unique heat-resistant DI particle, with an RNA molecule corresponding to the 3' half of the viral genome, exhibited an inactivation target size of approximately 42% of its RNA molecule with respect to both homotypic and heterotypic interference. Unlike other DI particles, this particle interfered with virion primary transcription. The unusual inactivation target size of the heat-resistant DI particle was interpreted as being a compromise between the requirements for replication of its genome and those for interference with virion primary transcription.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3