Improving Molecular Detection of Fungal DNA in Formalin-Fixed Paraffin-Embedded Tissues: Comparison of Five Tissue DNA Extraction Methods Using Panfungal PCR

Author:

Muñoz-Cadavid C.1,Rudd S.1,Zaki S. R.2,Patel M.2,Moser S. A.3,Brandt M. E.1,Gómez B. L.1

Affiliation:

1. Mycotic Diseases Branch

2. Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia

3. Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

ABSTRACT DNA extraction from formalin-fixed paraffin-embedded (FFPE) tissues is difficult and requires special protocols in order to extract small amounts of DNA suitable for amplification. Most described methods report an amplification success rate between 60 and 80%; therefore, there is a need to improve molecular detection and identification of fungi in FFPE tissue. Eighty-one archived FFPE tissues with a positive Gomori methenamine silver (GMS) stain were evaluated using five different commercial DNA extraction kits with some modifications. Three different panfungal PCR assays were used to detect fungal DNA, and two housekeeping genes were used to assess the presence of amplifiable DNA and to detect PCR inhibitors. The sensitivities of the five extraction protocols were compared, and the quality of DNA detection (calculated for each kit as the number of housekeeping gene PCR-positive samples divided by the total number of samples) was 60 to 91% among the five protocols. The efficiencies of the three different panfungals used (calculated as the number of panfungal-PCR-positive samples divided by the number of housekeeping gene PCR-positive samples) were 58 to 93%. The panfungal PCR using internal transcribed spacer 3 (ITS3) and ITS4 primers yielded a product in most FFPE tissues. Two of the five DNA extraction kits (from TaKaRa and Qiagen) showed similar and promising results. However, one method (TaKaRa) could extract fungal DNA from 69 of the 74 FFPE tissues from which a housekeeping gene could be amplified and was also cost-effective, with a nonlaborious protocol. Factors such as sensitivity, cost, and labor will help guide the selection of the most appropriate method for the needs of each laboratory.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3