The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth.

Author:

Zhan Q,Lord K A,Alamo I,Hollander M C,Carrier F,Ron D,Kohn K W,Hoffman B,Liebermann D A,Fornace A J

Abstract

A remarkable overlap was observed between the gadd genes, a group of often coordinately expressed genes that are induced by genotoxic stress and certain other growth arrest signals, and the MyD genes, a set of myeloid differentiation primary response genes. The MyD116 gene was found to be the murine homolog of the hamster gadd34 gene, whereas MyD118 and gadd45 were found to represent two separate but closely related genes. Furthermore, gadd34/MyD116, gadd45, MyD118, and gadd153 encode acidic proteins with very similar and unusual charge characteristics; both this property and a similar pattern of induction are shared with mdm2, whic, like gadd45, has been shown previously to be regulated by the tumor suppressor p53. Expression analysis revealed that they are distinguished from other growth arrest genes in that they are DNA damage inducible and suggest a role for these genes in growth arrest and apoptosis either coupled with or uncoupled from terminal differentiation. Evidence is also presented for coordinate induction in vivo by stress. The use of a short-term transfection assay, in which expression vectors for one or a combination of these gadd/MyD genes were transfected with a selectable marker into several different human tumor cell lines, provided direct evidence for the growth-inhibitory functions of the products of these genes and their ability to synergistically suppress growth. Taken together, these observations indicate that these genes define a novel class of mammalian genes encoding acidic proteins involved in the control of cellular growth.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3