The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix.

Author:

Overdier D G,Porcella A,Costa R H

Abstract

Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (HNF-3 alpha, -3 beta, and -3 gamma) are known to regulate the transcription of liver-specific genes. The HNF-3 proteins bind to DNA as a monomer through a modified helix-turn-helix, known as the winged helix motif, which is also utilized by a number of developmental regulators, including the Drosophila homeotic forkhead (fkh) protein. We have previously described the isolation, from rodent tissue, of an extensive family of tissue-specific HNF-3/fkh homolog (HFH) genes sharing homology in their winged helix motifs. In this report, we have determined the preferred DNA-binding consensus sequence for the HNF-3 beta protein as well as for two divergent family members, HFH-1 and HFH-2. We show that these HNF-3/fkh proteins bind to distinct DNA sites and that the specificity of protein recognition is dependent on subtle nucleotide alterations in the site. The HNF-3, HFH-1, and HFH-2 consensus binding sequences were also used to search DNA regulatory regions to identify potential target genes. Furthermore, an analysis of the DNA-binding properties of a series of HFH-1/HNF-3 beta protein chimeras has allowed us to identify a 20-amino-acid region, located adjacent to the DNA recognition helix, which contributes to DNA-binding specificity. These sequences are not involved in base-specific contacts and include residues which diverge within the HNF-3/fkh family. Replacement of this 20-amino-acid region in HNF-3 beta with corresponding residues from HFH-1 enabled the HNF-3 beta recognition helix to bind only HFH-1-specific DNA-binding sites. We propose a model in which this 20-amino-acid flanking region influences the DNA-binding properties of the recognition helix.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3