Affiliation:
1. Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Cientificas, Madrid, Spain.
Abstract
Secondary metabolism, usually superfluous under laboratory conditions, is intrinsically elusive to genetic analysis of its regulation. We describe here a method of analyzing regulatory mutations affecting expression of secondary metabolic genes, with an Aspergillus nidulans penicillin structural gene (ipnA [encoding isopenicillin N-synthase]) as a model. The method is based on a targeted double integration of a lacZ fusion reporter gene in a chromosome different from that containing the penicillin gene cluster. The trans-acting regulatory mutations simultaneously affect lacZ expression and penicillin biosynthesis. One of these mutations (npeE1) has been analyzed in detail. This mutation is recessive, prevents penicillin production and ipnA'::'lacZ expression, and results in very low levels of the ipnA message at certain times of growth. This indicates that npeE positively controls ipnA transcription. We also show that this tandem reporter fusion allows genetic analysis of npeE1 by using the sexual and parasexual cycles and that lacZ expression is an easily scorable phenotype. Haploidization analysis established that npeE is located in chromosome IV, but npeE1 does not show meiotic linkage to a number of known chromosome IV markers. This method might be of general applicability to genetic analysis of regulation of other fungal secondary metabolic pathways.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献