Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine

Author:

Shao Z Q1,Seffens W1,Mulbry W1,Behki R M1

Affiliation:

1. Centre for Land and Biological Resources Research, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.

Abstract

We used degenerate oligodeoxyribonucleotides derived from the N-terminal sequence of the s-triazine hydrolase from Rhodococcus corallinus NRRL B-15444R in an amplification reaction to isolate a DNA segment containing a 57-bp fragment from the trzA gene. By using the nucleotide sequence of this fragment, a nondegenerate oligodeoxyribonucleotide was synthesized and used to screen a genomic library of R. corallinus DNA for fragments containing trzA. A 5.3-kb PstI fragment containing trzA was cloned, and the nucleotide sequence of a 2,450-bp region containing trzA was determined. No trzA expression was detected in Escherichia coli or several other gram-negative bacteria. The trzA gene was subcloned into a Rhodococcus-E. coli shuttle vector, pBS305, and transformed into several Rhodococcus strains. Expression of trzA was demonstrated in all Rhodococcus transformants. Rhodococcus sp. strain TE1, which possesses the catabolic gene (atrA) for the N-dealkylation of the herbicides atrazine and simazine, was able to dechlorinate the dealkylated metabolites of atrazine and simazine when carrying the trzA gene on a plasmid. A plasmid carrying both atrA and trzA was constructed and transformed into three atrA- and trzA-deficient Rhodococcus strains. Both genes were expressed in the transformants. The s-triazine hydrolase activity of the recombinant strains carrying the trzA plasmid were compared with that of the R. corallinus strain from which it was derived.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference33 articles.

1. Herbicides in surface water prompt call for action;Anonymous;Pestic. Toxic Chem. News.,1991

2. Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites;Behki R. M.;J. Agric. Food Chem.,1986

3. Degradation of atrazine, propazine and simazine by Rhodococcus strain B-30;Behki R. M.;J. Agric. Food Chem.,1994

4. Metabolism of the herbicide atrazine by Rhodococcus strains;Behki R. M.;Appl. Environ. Microbiol.,1993

5. Ring dechlorination of deethylsimazine by hydrolases from Rhodococcus corallinus;Cook A.;FEMS Microbiol. Lett.,1986

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3