Isolation and cloning of a protein-serine/threonine phosphatase from an archaeon

Author:

Leng J1,Cameron A J1,Buckel S1,Kennelly P J1

Affiliation:

1. Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA.

Abstract

A divalent metal ion-stimulated protein-serine/threonine phosphatase, PP1-arch, was purified approximately 1,000-fold from the extreme acidothermophilic archaeon Sulfolobus solfataricus (ATCC 35091). Purified preparations contained 40 to 70% of total protein as PP1-arch, as determined by assay-ing sodium dodecyl sulfate-polyacrylamide gels for protein phosphatase activity. The first 25 amino acids of the protein's sequence were identified, as well as an internal sequence spanning some 20 amino acids. Using this information, we cloned the gene for PP1-arch via the application of PCR and conventional cloning techniques. The gene for PP1-arch predicted a protein of 293 amino acids that bore striking resemblance to the members of the major family of protein-serine/threonine phosphatases from members of the domain Eucarya, the PP1/2A/2B superfamily. The core of the protein, spanning residues 4 to 275, possessed 29 to 31% identity with these eucaryal protein phosphatases. Of the 42 residues found to be absolutely conserved among the known eucaryal members of the PP1/2A/2B superfamily, 33 were present in PP1-arch. If highly conservative substitutions are included, this total reached 37. The great degree of sequence conservation between molecules from two distinct phylogenetic domains implies that the members of this enzyme superfamily had evolved as specialized, dedicated protein phosphatases prior to the divergence of members of the Archaea and Eucarya from one another.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3