Chk1 Requirement for High Global Rates of Replication Fork Progression during Normal Vertebrate S Phase

Author:

Petermann Eva1,Maya-Mendoza Apolinar2,Zachos George34,Gillespie David A. F.34,Jackson Dean A.2,Caldecott Keith W.1

Affiliation:

1. Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, United Kingdom

2. The University of Manchester, Faculty of Life Sciences, The Mill, Sackville St., Manchester M60 1QD, United Kingdom

3. Beatson Institute for Cancer Research, Cancer Research UK, Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom

4. Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom

Abstract

ABSTRACT Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1 −/− chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1 −/− cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3 −/− DT40 cells. Rather, we observed an increased number of replication fibers in Chk1 −/− cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1 −/− cells are associated with the accumulation of aberrant replication fork structures.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3