Affiliation:
1. Department of Genetics, Universitat de València, Burjassot, Spain
2. Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universitat de València, Burjassot, Spain
3. Dow AgroSciences, Indianapolis, Indiana, USA
Abstract
ABSTRACT
Anticarsia gemmatalis
(velvetbean caterpillar) and
Chrysodeixis includens
(soybean looper, formerly named
Pseudoplusia includens
) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the
Bacillus thuringiensis
(Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa
125
-iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both
A. gemmatalis
and
C. includens
. Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in
A. gemmatalis
and
C. includens
and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.
IMPORTANCE
In the present study, the toxicity and the mode of action of the
Bacillus thuringiensis
(Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in
Anticarsia gemmatalis
and
Chrysodeixis includens
(important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in
A. gemmatalis
and
C. includens
and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference62 articles.
1. Gianessi L . 2009. The benefits of insecticide use: soybeans. Crop Protection Research Institute, CropLife Foundation,Washington, DC.
2. Control of Pseudoplusia includens (Walker, 1857) in the soybean culture with different insecticides
3. Current situation of pests targeted by Bt crops in Latin America
4. James C . 2015. 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA brief no. 51. International Service for the Acquisition of Agri-Biotech Applications,Ithaca, NY.
5. Lepidoptera (Insecta) associated with soybean in Argentina, Brazil, Chile and Uruguay