Escherichia coli O-Genotyping PCR: a Comprehensive and Practical Platform for Molecular O Serogrouping

Author:

Iguchi Atsushi1,Iyoda Sunao2,Seto Kazuko3,Morita-Ishihara Tomoko2,Scheutz Flemming45,Ohnishi Makoto2

Affiliation:

1. Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan

2. Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan

3. Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan

4. Department of Microbiology Infection Control, Statens Serum Institut, Copenhagen, Denmark

5. WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut, Copenhagen, Denmark

Abstract

ABSTRACT The O serogrouping of pathogenic Escherichia coli is a standard method for subtyping strains for epidemiological studies and enhancing phylogenetic studies. In particular, the identification of strains of the same O serogroup is essential in outbreak investigations and surveillance. In a previous study, we analyzed the O-antigen biosynthesis gene cluster in all known E. coli O serogroups (A. Iguchi et al., DNA Res, 22:101–107, 2015, http://dx.doi.org/10.1093/dnares/dsu043 ). Based on those results, we have arranged 162 PCR primer pairs for the identification or classification of O serogroups. Of these, 147 pairs were used to identify 147 individual O serogroups with unique O-antigen biosynthesis genes, and the other 15 pairs were used to identify 15 groups of strains (Gp1 to Gp15). Each of these groups consisted of strains with identical or very similar O-antigen biosynthesis genes, and the groups represented a total of 35 individual O serogroups. We then used the 162 primer pairs to create 20 multiplex PCR sets. Each set contained six to nine primer pairs that amplify products of markedly different sizes. This genetic methodology ( E. coli O-genotyping PCR) allowed for comprehensive, rapid, and low-cost typing. Validation of the PCR system using O-serogroup references and wild strains showed that the correct O serogroups were specifically and accurately identified for 100% (182/182) and 90.8% (522/575) of references and wild strains, respectively. The PCR-based system reported here might be a promising tool for the subtyping of E. coli strains for epidemiological studies as well as for the surveillance of pathogenic E. coli during outbreaks.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3