Targeting the Treponemal Microbiome of Digital Dermatitis Infections by High-Resolution Phylogenetic Analyses and Comparison with Fluorescent In Situ Hybridization

Author:

Klitgaard Kirstine1,Foix Bretó Antoni2,Boye Mette1,Jensen Tim K.1

Affiliation:

1. National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark

2. HIPRA, Girona, Spain

Abstract

ABSTRACT Modern pyrosequencing technology allows for a more comprehensive approach than traditional Sanger sequencing for elucidating the etiology of bovine digital dermatitis. We sought to describe the composition and diversity of treponemes in digital dermatitis lesions by using deep sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene coupled with species-level taxonomic identification. Treponema -specific 16S rRNA gene PCRs and pyrosequencing were performed on biopsy specimens originating from 10 different Catalan dairy herds ( n = 36) with digital dermatitis, and this analysis yielded 75,297 sequences. We identified 20 different taxa, including a potentially novel phylotype that displayed 95% sequence identity to members of the Treponema denticola / Treponema pedis -like cluster. Species frequencies and abundances that were determined by pyrosequencing analysis were highly correlated with the results of fluorescent in situ hybridization using phylotype-specific oligonucleotide probes. In a limited number of animals from a single geographic region, we detected most of the Treponema phylotypes that were described in previous investigations of digital dermatitis. Additionally, we identified a number of phylotypes that mapped to oral treponemes of humans and dogs that had not been reported for digital dermatitis lesions. The results presented here support previous observations of a polytreponemal etiology of infections, with Treponema phagedenis -like, Treponema medium / Treponema vincentii -like, and T. denticola / T. pedis -like phylotypes being highly associated with disease. Using this new approach, it has become feasible to study large herds and their surrounding environments, which might provide a basis for a better understanding of the pathogenesis of this disease.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3