Membrane Lipid Biosynthesis in Acholeplasma laidlawii B: Elongation of Medium- and Long-Chain Exogenous Fatty Acids in Growing Cells

Author:

Saito Yuji1,Silvius John R.1,McElhaney Ronald N.1

Affiliation:

1. Department of Biochemistry, The University of Alberta, Edmonton, Alberta, Canada T6G 2H7

Abstract

The chain elongation of a wide variety of exogenous fatty acids and the subsequent incorporation of the chain elongation products into the total membrane lipids of Acholeplasma laidlawii B were systematically studied. Within each chemical class of fatty acids examined, the extent of chain elongation increased with increases in chain length, reached a maximum value, and then declined with further increases in chain length. Depending on chemical structure, exogenous fatty acids containing less than 6 to 9 carbon atoms or more than 15 to 18 carbon atoms were not substrates for the chain elongation system. The substrate specificity of this fatty acid elongation system was strikingly broad, and straight-chain, methyl isobranched, and methyl anteisobranched saturated fatty acids, as well as cis - and trans -monounsaturated, cis -cyclopropane, and cis -polyunsaturated fatty acids, underwent chain elongation in vivo. The extent of chain elongation and the average chain length of the primary elongation products correlated well with the physical properties (melting temperatures) of the exogenous fatty acid substrates. The specificity of fatty acid chain elongation in A. laidlawii B maintained the fluidity and physical state of the membrane lipids within a rather wide but definitely limited range. The fatty acid chain elongation system of this organism could be markedly influenced by the presence of a second exogenous fatty acid that was not itself a substrate for the chain elongation system but was incorporated directly into the membrane lipids. The presence of a relatively low-melting exogenous fatty acid increased both the extent of chain elongation and the average chain length of the elongation products generated, whereas the presence of a relatively high-melting fatty acid had the opposite effect. The extent of chain elongation and nature of the elongation products formed were not, however, dependent on the fluidity and physical state of the membrane lipids per se. The second exogenous fatty acid appeared instead to exert its characteristic effect by competing with the chain elongation substrate and elongation products for the stereospecific acylation of positions 1 and 2 of sn -glycerol-3-phosphate. The similar effects of alterations in environmental temperature, cholesterol content, and exposure to the antibiotic cerulenin on the fatty acid chain elongation and de novo biosynthetic activities suggested that the chain elongation system of this organism may be a component of the de novo biosynthetic system.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3