Persistent Infection of Mouse Fibroblasts (L Cells) with Chlamydia psittaci : Evidence for a Cryptic Chlamydial Form

Author:

Moulder James W.1,Levy Nancy J.1,Schulman Laura P.1

Affiliation:

1. Department of Microbiology and the College, University of Chicago, Chicago, Illinois 60637

Abstract

When monolayers of mouse fibroblasts (L cells) were infected with enough Chlamydia psittaci (strain 6BC) to destroy most of the host cells, 1 in every 10 5 to 10 6 originally infected cells gave rise to a colony of L cells persistently infected with strain 6BC. In these populations, the density of L cells and 6BC fluctuated periodically and reciprocally as periods of host cell increase were followed by periods of parasite multiplication. Successive cycles of L-cell and 6BC reproduction were sustained indefinitely by periodic transfer to fresh medium. Isolation of L cells and 6BC from persistent infections provided no evidence that there had been any selection of variants better suited for coexistence. Persistently infected populations consisting mainly of inclusion-free L cells yielded only persistently infected clones, grew more slowly, and cloned less efficiently. They were also almost completely resistant to superinfection with high multiplicities of either 6BC or the lymphogranuloma venereum strain 440L of Chlamydia trachomatis . These properties of persistently infected L cells may be accounted for by assuming that all of the individuals in these populations are cryptically infected with 6BC and that cryptic infection slows the growth of the host cell and makes it immune to infection with exogenous chlamydiae. According to this hypothesis, the fluctuations in host and parasite density occur because some factor periodically sets off the conversion of cryptic chlamydial forms into reticulate bodies that multiply and differentiate into infectious elementary bodies in a conventional chlamydial developmental cycle.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3