Efficient initiation and strand transfer of polypurine tract-primed plus-strand DNA prevent strand transfer of internally initiated plus-strand DNA

Author:

Bowman E H1,Pathak V K1,Hu W S1

Affiliation:

1. Department of Microbiology and Immunology, School of Medicine, West Virginia University, Morgantown 26506, USA.

Abstract

A critical step in retroviral reverse transcription is the initiation of plus-strand DNA synthesis at the polypurine tract (PPT) and strand transfer of the PPT-primed strong-stop DNA to the 5' end of the viral DNA. An attachment site (att) immediately 3' to the PPT is essential for proper integration of proviral DNA into the host chromosome. Plus-strand DNA synthesis is discontinuous in many retroviruses, indicating that sequences upstream of the PPT are also used to initiate plus-strand DNA synthesis (internally initiated DNA). Strand transfer of internally initiated DNA would result in "dead" viral DNA that lacks the att site needed for integration. Strand transfer of the internally initiated DNA could occur if DNA synthesis failed to initiate at the PPT or if the PPT-primed DNA was displaced before strand transfer. We sought to determine the efficiency of DNA synthesis initiating at the PPT and the proportions of PPT-primed DNA and internally initiated DNAs that are utilized for strand transfer. We constructed spleen necrosis virus-based retroviral vectors containing an internal PPT and an att site 5' of the normal PPT and att site. After one replication cycle of the retroviral vectors, the structures of the resulting proviruses were determined by Southern blotting. The analysis suggested that the PPT is an efficient and rapid initiator of plus-strand DNA synthesis and that internally initiated DNAs are rarely utilized for strand transfer. We hypothesize that efficient synthesis and strand transfer of PPT-primed DNA evolved to prevent lethal strand transfers of internally initiated DNAs.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3