Functional Characterization of a 28-Kilobase Catabolic Island from Pseudomonas sp. Strain M1 Involved in Biotransformation of β-Myrcene and Related Plant-Derived Volatiles

Author:

Soares-Castro Pedro1,Montenegro-Silva Pedro1,Heipieper Hermann J.2,Santos Pedro M.1ORCID

Affiliation:

1. CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal

2. Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Leipzig, Germany

Abstract

ABSTRACT Pseudomonas sp. strain M1 is able to mineralize highly hydrophobic and recalcitrant compounds, such as benzene, phenol, and their methylated/halogenated derivatives, as well as the backbone of several monoterpenes. The ability to use such a spectrum of compounds as the sole carbon source is, most probably, associated with a genetic background evolved under different environmental constraints. The outstanding performance of strain M1 regarding β-myrcene catabolism was elucidated in this work, with a focus on the biocatalytical potential of the β-myrcene-associated core code, comprised in a 28-kb genomic island (GI), predicted to be organized in 8 transcriptional units. Functional characterization of this locus with promoter probes and analytical approaches validated the genetic organization predicted in silico and associated the β-myrcene-induced promoter activity to the production of β-myrcene derivatives. Notably, by using a whole-genome mutagenesis strategy, different genotypes of the 28-kb GI were generated, resulting in the identification of a novel putative β-myrcene hydroxylase, responsible for the initial oxidation of β-myrcene into myrcen-8-ol, and a sensor-like regulatory protein, whose inactivation abolished the myr + trait of M1 cells. Moreover, it was demonstrated that the range of monoterpene substrates of the M1 enzymatic repertoire, besides β-myrcene, also includes other acyclic (e.g., β-linalool) and cyclic [e.g., R -(+)-limonene and (−)-β-pinene] molecules. Our findings are the cornerstone for following metabolic engineering approaches and hint at a major role of the 28-kb GI in the biotransformation of a broad monoterpene backbone spectrum for its future biotechnological applications. IMPORTANCE Information regarding microbial systems able to biotransform monoterpenes, especially β-myrcene, is limited and focused mainly on nonsystematic metabolite identification. Complete and detailed knowledge at the genetic, protein, metabolite, and regulatory levels is essential in order to set a model organism or a catabolic system as a biotechnology tool. Moreover, molecular characterization of reported systems is scarce, almost nonexistent, limiting advances in the development of optimized cell factories with strategies based on the new generation of metabolic engineering platforms. This study provides new insights into the intricate molecular functionalities associated with β-myrcene catabolism in Pseudomonas , envisaging the production of a molecular knowledge base about the underlying catalytic and regulatory mechanisms of plant-derived volatile catabolic pathways.

Funder

Ministry of Education and Science | Fundação para a Ciência e a Tecnologia

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3