Affiliation:
1. Department of Cellular Biology, University of Massachusetts, Amherst 01003.
Abstract
Immunocytochemistry and in situ hybridization were used to identify simian virus 40 (SV40) large T-antigen expression and viral DNA replication in individual cells of infected semipermissive human cell lines. SV40 infection aborts before T-antigen expression in many cells of each of the human cell lines examined. In all but one of the human cell lines, most of the T-antigen-producing cells replicated viral DNA. However, in the A172 line of human glial cells only a small percentage of the T-antigen-expressing cells replicated viral DNA. Since different structural and functional classes of T antigen can be recognized with anti-T monoclonal antibodies, we examined infected A172 cells with a panel of 10 anti-T monoclonal antibodies to determine whether viral DNA replication might correlate with the expression of a particular epitope of T antigen. One anti-T monoclonal antibody, PAb 100, did specifically recognize that subset of A172 cells which replicated SV40 DNA. The percentage of PAb 100-reactive A172 cells was dramatically increased by the DNA synthesis inhibitors hydroxyurea and aphidicolin. Removal of the hydroxyurea was followed by an increase in the percentage of cells replicating viral DNA corresponding to the increased percentage reactive with PAb 100. The pattern of SV40 infection in A172 cells was not altered by infection with viable viral mutants containing lesions in the small t protein, the agnoprotein, or the enhancer region. Finally, in situ hybridization was used to show that the percentage of human cells expressing T antigen was similar to the percentage transcribing early SV40 mRNA. Thus, the block to T-antigen expression in human cells is at a stage prior to transcription of early SV40 mRNA.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献