Mechanism of killing by virus-induced cytotoxic T lymphocytes elicited in vivo

Author:

Welsh R M1,Nishioka W K1,Antia R1,Dundon P L1

Affiliation:

1. Department of Pathology, University of Massachusetts Medical Center, Worcester, 01655.

Abstract

The mechanism of lysis by in vivo-induced cytotoxic T lymphocytes (CTL) was examined with virus-specific CTL from mice infected with lymphocytic choriomeningitis virus (LCMV). LCMV-induced T cells were shown to have greater than 10 times the serine esterase activity of T cells from normal mice, and high levels of serine esterase were located in the LCMV-induced CD8+ cell population. Serine esterase was also induced in purified T-cell preparations isolated from mice infected with other viruses (mouse hepatitis, Pichinde, and vaccinia). In contrast, the interferon inducer poly(I.C) only marginally enhanced serine esterase in T cells. Serine esterase activity was released from the LCMV-induced T cells upon incubation with syngeneic but not allogeneic LCMV-infected target cells. Both cytotoxicity and the release of serine esterase were calcium dependent. Serine esterase released from disrupted LCMV-induced T cells was in the form of the fast-sedimenting particles, suggesting its inclusion in granules. Competitive substrates for serine esterase blocked killing by LCMV-specific CTL, but serine esterase-containing granules isolated from LCMV-induced CTL, in contrast to granules isolated from a rat natural killer cell tumor line, did not display detectable hemolytic activity. Fragmentation of target cell DNA was observed during the lytic process mediated by LCMV-specific CTL, and the release of the DNA label [125I]iododeoxyuridine from target cells and the accompanying fragmentation of DNA also were calcium dependent. These data support the hypothesis that the mechanism of killing by in vivo-induced T cells involves a calcium-dependent secretion of serine esterase-containing granules and a target cell death by a process involving nuclear degradation and DNA fragmentation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference37 articles.

1. Highly Iytic in vivo primed cytolytic T Iymphocytes devoid of Iytic granules and BLTesterase activity acquire these constituents in the presence of T cell growth factors upon blast transformation in vitro;Berke G.;J. Immunol.,1988

2. Lysis of uninfected and virus-infected cells in vivo: a rejection mechanism in addition to that mediated by natural killer cells;Biron C. A.;J. Virol.,1984

3. Generation of large granular T Iymphocytes in vivo during viral infection;Biron C. A.;J. Immunol.,1986

4. Aberrant T cells in beige mutant mice;Biron C. A.;J. Immunol.,1987

5. High activity of Na-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase and cytolytic perforin in cloned cell lines is not demonstrable in in vivo-induced cytotoxic effector cells;Dennert G.;Proc. Natl. Acad. Sci. USA,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3