The unique trafficking pattern of Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry

Author:

Rathman M1,Barker L P1,Falkow S1

Affiliation:

1. Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA.

Abstract

Although it has been known for some time that Salmonella typhimurium is able to survive and even replicate in the normally bactericidal environment of the macrophage phagosome, the mechanisms by which this organism accomplishes this feat remain obscure. In this study, a murine macrophage cell line and confocal immunofluorescence microscopy were used to more thoroughly define the specific nature of phagosomes containing latex beads or wild-type S. typhimurium (viable or heat-killed organisms). Live S. typhimurium organisms were observed to reside in phagosomes that diverge from the degradative pathway of the macrophage. These compartments contain lysosomal glycoproteins and lysosomal acid phosphatase, endocytic markers delivered to vacuoles by mannose 6-phosphate receptor-independent mechanisms, but are devoid of the mannose 6-phosphate receptor and cathepsin L. In contrast, phagosomes containing latex beads or heat-killed organisms appeared to be processed along the degradative pathway of the host cell; these compartments colocalized not only with lysosomal glycoproteins and lysosomal acid phosphatases but also with mannose 6-phosphate receptors and cathepsin L. The uniqueness of the phagosome containing viable S. typhimurium was confirmed by the observation that these compartments, in comparison to phagosomes containing latex beads, do not readily interact with incoming endocytic traffic. Finally, we show that an isogenic, noninvasive mutant of S. typhimurium, BJ66, ends up in an intracellular compartment identical to the wild-type S. typhimurium-containing phagosome. Thus, modifications of the Salmonella-containing compartment occur independently of the mechanism of bacterial entry.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3