Isolation, Enumeration, and Characterization of Aeromonas from Polluted Waters Encountered in Diving Operations

Author:

Seidler Ramon J.1,Allen D. A.1,Lockman H.1,Colwell R. R.1,Joseph S. W.2,Daily O. P.2

Affiliation:

1. Department of Microbiology, University of Maryland, College Park, Maryland 20742

2. Department of Microbiology, Naval Medical Research Institute, Bethesda, Maryland 20014

Abstract

Counts of total viable, aerobic, heterotrophic bacteria, indicator organisms, and Aeromonas spp. were made at a diver training site on the Anacostia River in Washington, D.C. The numbers of Aeromonas cells in Anacostia River sediment and water increased during periods of elevated water temperature, to maxima of 4 � 10 5 cells per g of sediment and 300 cells per ml of water. Correspondingly, Aeromonas counts dropped 2 to 4 logs as the water temperature decreased to 0 to 0.5�C. Cultures taken by sterile swabs from the ears and face masks of divers after a 30-min swim in the Anacostia River yielded bacterial types and numbers similar to those found in the river. The nasal passages of the divers apparently did not become contaminated by swimming, possibly because of the protective effect of the face masks used by the divers. Properties associated with virulence in Aeromonas hydrophila and Aeromonas sobria strains isolated from the river, sediment, and divers were investigated. Nearly 40% of the strains of both species collected during the study produced cytotoxic activity for mouse Y-1 adrenal cells, as well as elastase. Enterotoxin activity, as detected by the Y-1 assay, was observed in 3% (1 of 35) of the strains of A. sobria and in 6% (19 of 330) of the A. hydrophila strains. Fluid accumulation in rabbit ileal loops induced by both species of Aeromonas varied greatly among the 17 strains examined. Fluid accumulation of at least 0.4 ml/cm was correlated with positive cytotoxin- or enterotoxin-like response in the Y-1 tissue culture assay.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3