Human Glucocorticoid Receptor β Binds RU-486 and Is TranscriptionallyActive

Author:

Lewis-Tuffin Laura J.1,Jewell Christine M.1,Bienstock Rachelle J.2,Collins Jennifer B.3,Cidlowski John A.1

Affiliation:

1. Laboratory of Signal Transduction

2. Scientific Computing Laboratory

3. NIEHS Microarray Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, North Carolina 27709

Abstract

ABSTRACT Human glucocorticoid receptor (hGR) is expressed as two alternately spliced C-terminal isoforms, α and β. In contrast to the canonical hGRα, hGRβ is a nucleus-localized orphan receptor thought not to bind ligand and not to affect gene transcription other than by acting as a dominant negative to hGRα. Here we used confocal microscopy to examine the cellular localization of transiently expressed fluorescent protein-tagged hGRβ in COS-1 and U-2 OS cells. Surprisingly, yellow fluorescent protein (YFP)-hGRβ was predominantly located in the cytoplasm and translocated to the nucleus following application of the glucocorticoid antagonist RU-486. This effect of RU-486 was confirmed with transiently expressed wild-type hGRβ. Confocal microscopy of coexpressed YFP-hGRβ and cyan fluorescent protein-hGRα in COS-1 cells indicated that the receptors move into the nucleus independently. Using a ligand binding assay, we confirmed that hGRβ bound RU-486 but not the hGRα ligand dexamethasone. Examination of the cellular localization of YFP-hGRβ in response to a series of 57 related compounds indicated that RU-486 is thus far the only identified ligand that interacts with hGRβ. The selective interaction of RU-486 with hGRβ was also supported by molecular modeling and computational docking studies. Interestingly, microarray analysis indicates that hGRβ, expressed in the absence of hGRα, can regulate gene expression and furthermore that occupation of hGRβ with the antagonist RU-486 diminishes that capacity despite the lack of helix 12 in the ligand binding domain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3