exo1 -Dependent Mutator Mutations: Model System for Studying Functional Interactions in Mismatch Repair

Author:

Amin Neelam S.1,Nguyen My-Nga1,Oh Scott1,Kolodner Richard D.123

Affiliation:

1. Ludwig Institute for Cancer Research,1

2. Department of Medicine, 2 and

3. Cancer Center, 3 University of California, San Diego School of Medicine, La Jolla, California 92093-0660

Abstract

ABSTRACT EXO1 interacts with MSH2 and MLH1 and has been proposed to be a redundant exonuclease that functions in mismatch repair (MMR). To better understand the role of EXO1 in mismatch repair, a genetic screen was performed to identify mutations that increase the mutation rates caused by weak mutator mutations such as exo1 Δ and pms1-A130V mutations. In a screen starting with an exo1 mutation, exo1 -dependent mutator mutations were obtained in MLH1, PMS1, MSH2, MSH3, POL30 (PCNA), POL32 , and RNR1 , whereas starting with the weak pms1 allele pms1-A130V , pms1 -dependent mutator mutations were identified in MLH1, MSH2, MSH3, MSH6 , and EXO1 . These mutations only cause weak MMR defects as single mutants but cause strong MMR defects when combined with each other. Most of the mutations obtained caused amino acid substitutions in MLH1 or PMS1, and these clustered in either the ATP-binding region or the MLH1-PMS1 interaction regions of these proteins. The mutations showed two other types of interactions: specific pairs of mutations showed unlinked noncomplementation in diploid strains, and the defect caused by pairs of mutations could be suppressed by high-copy-number expression of a third gene, an effect that showed allele and overexpressed gene specificity. These results support a model in which EXO1 plays a structural role in MMR and stabilizes multiprotein complexes containing a number of MMR proteins. A similar role is proposed for PCNA based on the data presented.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3