Parallel and Independent Regulation of Interleukin-3 mRNA Turnover by Phosphatidylinositol 3-Kinase and p38 Mitogen-Activated Protein Kinase

Author:

Ming Xiu-Fen1,Stoecklin Georg1,Lu Min1,Looser Renate1,Moroni Christoph1

Affiliation:

1. Institute for Medical Microbiology, University of Basel, Basel, Switzerland

Abstract

ABSTRACT AU-rich elements (ARE) present in the 3′ untranslated regions of many cytokines and immediate-early genes are responsible for targeting the transcripts for rapid decay. We present evidence from cotransfection experiments in NIH 3T3 cells that two signaling pathways, one involving phosphatidylinositol 3-kinase (PI3-K), and one involving the p38 mitogen-activated protein kinase (MAPK), lead to stabilization of interleukin-3 mRNA in parallel. Stabilization mediated by either of the two pathways was antagonized by tristetraprolin (TTP), an AU-binding protein known to promote constitutive decay of ARE-containing transcripts. Remarkably, the stabilizing AU-binding protein HuR, in collaboration with p38 MAPK but not with PI3-K, could overcome the destabilizing effect of TTP. These data argue that the stabilizing kinases PI3-K and p38 MAPK do not act through direct inactivation of TTP but via activating pathway-specific stabilizing AU-binding proteins. Our data suggest an integrated model of mRNA turnover control, where stabilizing (HuR) and destabilizing (TTP) AU-binding proteins compete and where the former are under the positive control of independent phosphokinase signaling pathways.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3