NorA Functions as a Multidrug Efflux Protein in both Cytoplasmic Membrane Vesicles and Reconstituted Proteoliposomes

Author:

Yu Jian-Lin1,Grinius Leo2,Hooper David C.1

Affiliation:

1. Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114

2. Health Care Research Center, Procter and Gamble Pharmaceuticals, Mason, Ohio 45040

Abstract

ABSTRACT Overexpression of NorA, an endogenous efflux transporter of Staphylococcus aureus , confers resistance to certain fluoroquinolone antimicrobials and diverse other substrates. The norA gene was amplified by PCR and cloned in the expression vector pTrcHis2. Histidine-tagged NorA (NorA-His) was overexpressed in Escherichia coli cells to prepare two experimental systems, everted membrane vesicles enriched with NorA-His and proteoliposomes reconstituted with purified NorA-His. In membrane vesicles, NorA-His actively transported Hoechst 33342, a dye that is strongly fluorescent in the membrane but has low fluorescence in an aqueous environment. Transport was activated by the addition of ATP or lactate and reversed by the addition of nigericin, with the addition of K + -valinomycin having little effect. Transport of Hoechst 33342 was inhibited competitively by verapamil, a known inhibitor of NorA, and by other NorA substrates, including tetraphenyl phosphonium and the fluoroquinolones norfloxacin and ciprofloxacin. In contrast, sparfloxacin, a fluoroquinolone whose antimicrobial activity is not affected by NorA expression, exhibited noncompetitive inhibition. NorA induction and overexpression yielded 0.5 to 1 mg of a largely homogeneous 40- to 43-kDa protein per liter of culture. NorA-His incorporated into proteoliposomes retained the ability to transport Hoechst 33342 in response to an artificial proton gradient, and transport was blocked by nigericin and verapamil. These data provide the first experimental evidence of NorA functioning as a self-sufficient multidrug transporter.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3