Molecular Characterization of Serine-, Alanine-, and Proline-Rich Proteins of Trypanosoma cruzi and Their Possible Role in Host Cell Infection

Author:

Baida Renata C. P.1,Santos Márcia R. M.1,Carmo Mirian S.1,Yoshida Nobuko1,Ferreira Danielle1,Ferreira Alice Teixeira2,El Sayed Najib M.3,Andersson Bjorn4,da Silveira José Franco1

Affiliation:

1. Departments of Microbiology, Immunology and Parasitology

2. Biophysics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil

3. The Institute for Genomic Research-TIGR, Rockville, Maryland

4. Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden

Abstract

ABSTRACT We previously reported the isolation of a novel protein gene family, termed SAP (serine-, alanine-, and proline-rich protein), from Trypanosoma cruzi . Aided by the availability of the completed genome sequence of T. cruzi , we have now identified 39 full-length sequences of SAP, six pseudogenes and four partial genes. SAPs share a central domain of about 55 amino acids and can be divided into four groups based on their amino (N)- and carboxy (C)-terminal sequences. Some SAPs have conserved N- and C-terminal domains encoding a signal peptide and a glycosylphosphatidylinositol anchor addition site, respectively. Analysis of the expression of SAPs in metacyclic trypomastigotes by two-dimensional electrophoresis and immunoblotting revealed that they are likely to be posttranslationally modified in vivo. We have also demonstrated that some SAPs are shed into the extracellular medium. The recombinant SAP exhibited an adhesive capacity toward mammalian cells, where binding was dose dependent and saturable, indicating a possible ligand-receptor interaction. SAP triggered the host cell Ca 2+ response required for parasite internalization. A cell invasion assay performed in the presence of SAP showed inhibition of internalization of the metacyclic forms of the CL strain. Taken together, these results show that SAP is involved in the invasion of mammalian cells by metacyclic trypomastigotes, and they confirm the hypothesis that infective trypomastigotes exploit an arsenal of surface glycoproteins and shed proteins to induce signaling events required for their internalization.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3