Yeast pheromone response pathway: characterization of a suppressor that restores mating to receptorless mutants.

Author:

Clark K L,Sprague G F

Abstract

Saccharomyces cerevisiae haploid cells, alpha and a, mate after being appropriately stimulated by the pheromone secreted by the opposite cell type (a-factor and alpha-factor, respectively). The binding of a pheromone to its receptor is a signal that initiates a series of intracellular changes that lead to the specific physiological alterations required for mating. To identify components of the signal transduction pathway, we sought pseudorevertants that restored mating competence to receptor mutants (MAT alpha ste3::LEU2). The suppressor srm1-1 was isolated as a recessive mutation that conferred temperature-sensitive growth to all strains and mating ability to MAT alpha ste3::LEU2 strains at the nonpermissive temperature. In addition, when srm1-1 mutants were shifted to the nonpermissive temperature, they exhibited two phenotypes characteristic of pheromone response, induction of FUS1 transcription and accumulation of cells in the G1 phase of the cell cycle. The srm1-1 mutation also suppressed a deletion of the alpha-factor-receptor gene in a cells. Together, these phenotypes suggest that the wild-type SRM1 product is a component of the pheromone response pathway. Deletion of STE4 or STE5, which are required in both haploid cell types for mating and response to pheromone, was not suppressed by srm1-1, suggesting that the SRM1 product may function before the STE4 and STE5 products. SRM1 is an essential gene and is expressed in both haploid cell types as well as in the product of their mating, a/alpha diploids. Homozygous srm1-1 a/alpha diploids were temperature sensitive although they did not arrest in G1. Thus, the SRM1 product may also have a role in the vegetative life cycle of cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3