Organization and expression of the cell cycle gene, ts11, that encodes asparagine synthetase.

Author:

Greco A,Gong S S,Ittmann M,Basilico C

Abstract

The human ts11 gene was isolated on the basis of its ability to complement the mutation of the BHK cell cycle ts11 mutant, which is blocked in G1 at the nonpermissive temperature. This gene has now been identified as the structural gene for asparagine synthetase (AS) on the bases of sequence homology and the ability of exogenous asparagine to bypass the ts11 block. The ts11 (AS) mRNA has a size of about 2 kilobases and is induced in mid-G1 phase in human, mouse, and hamster cell lines. We have studied the organization and regulation of expression of the ts11 gene. The human ts11 gene consists of 13 exons (the first two noncoding) interspersed in a region of about 21 kilobases of DNA. Transient expression assays using the bacterial chloramphenicol acetyltransferase reporter gene identified two separate promoters: one (ts11 P1) contained in a 280-base-pair region upstream of the first exon and the other (ts11 P2) contained in the first intron. ts11 P1 produced about sixfold more chloramphenicol acetyltransferase activity than did ts11 P2 and had features of the promoters of housekeeping genes: high G + C content, multiple transcription start sites, absence of a TATA box, and presence of putative Sp1 binding sites. ts11 P2 contained a TATA sequence and other elements characteristic of a promoter, but so far we have no evidence of its physiological utilization. The ts11 gene was overexpressed in ts11 cells exposed to the nonpermissive temperature. Addition of asparagine to the culture medium led to a drastic decrease in mRNA levels and prevented G1 induction in serum-stimulated cells, which indicated that expression of the AS gene is regulated by a mechanism of end product inhibition.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3