Author:
Kassavetis G A,Riggs D L,Negri R,Nguyen L H,Geiduschek E P
Abstract
Transcription complexes that assemble on tRNA genes in a crude Saccharomyces cerevisiae cell extract extend over the entire transcription unit and approximately 40 base pairs of contiguous 5'-flanking DNA. We show here that the interaction with 5'-flanking DNA is due to a protein that copurifies with transcription factor TFIIIB through several steps of purification and shares characteristic properties that are normally ascribed to TFIIIB: dependence on prior binding of TFIIIC and great stability once the TFIIIC-TFIIIB-DNA complex is formed. SUP4 gene (tRNATyr) DNA that was cut within the 5'-flanking sequence (either 31 or 28 base pairs upstream of the transcriptional start site) was no longer able to stably incorporate TFIIIB into a transcription complex. The TFIIIB-dependent 5'-flanking DNA protein interaction was predominantly not sequence specific. The extension of the transcription complex into this DNA segment does suggest two possible explanations for highly diverse effects of flanking-sequence substitutions on tRNA gene transcription: either (i) proteins that are capable of binding to these upstream DNA segments are also potentially capable of stimulating or interfering with the incorporation of TFIIIB into transcription complexes or (ii) 5'-flanking sequence influences the rate of assembly of TFIIIB into stable transcription complexes.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
227 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献