High Immunoglobulin G2 (IgG2) and Low IgG4 Levels Are Associated with Human Resistance to Plasmodium falciparum Malaria

Author:

Aucan Christophe1,Traoré Yves2,Tall François3,Nacro Boubacar3,Traoré-Leroux Thérèse2,Fumoux Francis12,Rihet Pascal1

Affiliation:

1. Faculté des Sciences de Luminy, Université de la Méditerranée, Marseille, France,1 and

2. Centre Muraz, O.C.C.G.E.,2 and

3. Hôpital Souro Sanou,3 Bobo-Dioulasso, Burkina Faso

Abstract

ABSTRACT There is accumulating evidence for a role of immunoglobulin G (IgG) in protection against malarial infection and disease. Only IgG1 and IgG3 are considered cytophilic and protective against P. falciparum , whereas IgG2 and IgG4 were thought to be neither and even to block protective mechanisms. However, no clear pattern of association between isotypes and protection has so far emerged. We analyzed the isotypic distribution of the IgG response to conserved epitopes and P. falciparum blood-stage extract in 283 malaria-exposed individuals whose occurrence of infection and malaria attack had been monitored for about 1 year. Logistic regression analyses showed that, at the end of the season of transmission, high levels of IgG2 to RESA and to MSP2 epitopes were associated with low risk of infection. Indeed, IgG2 is able to bind FcγRIIA in individuals possessing the H131 allele, and we showed that 70% of the study subjects had this allele. Also, high specific IgG4 levels were associated with an enhanced risk of infection and with a high risk of malaria attack. Moreover, specific IgG2 and IgG3 levels, as well as the IgG2/IgG4 and IgG3/IgG4 ratios, increased with the age of subjects, in parallel with the protection against infection and disease. IgG4 likely competes with cytophilic antibodies for antigen recognition and may therefore block cytotoxicity mediated by antibody-activated effector cells. In conclusion, these results favor a protective role of IgG3 and IgG2, which may activate effector cells through FcγRIIA, and provide evidence for a blocking role of IgG4 in malarial infection and disease.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3