Thiostrepton and Derivatives Exhibit Antimalarial and Gametocytocidal Activity by Dually Targeting Parasite Proteasome and Apicoplast

Author:

Aminake Makoah N.1,Schoof Sebastian2,Sologub Ludmilla1,Leubner Monika1,Kirschner Marc3,Arndt Hans-Dieter2,Pradel Gabriele1

Affiliation:

1. Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany

2. Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany, and Technische Universität Dortmund, Faculty of Chemistry, Otto-Hahn-Str. 6, 44221 Dortmund, Germany

3. Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany

Abstract

ABSTRACT Ribosome-targeting antibiotics exert their antimalarial activity on the apicoplast of the malaria parasite, an organelle of prokaryote origin having essential metabolic functions. These antibiotics typically cause a delayed-death phenotype, which manifests in parasite killing during the second replication cycle following administration. As an exception, treatment with the antibiotic thiostrepton results in an immediate killing. We recently demonstrated that thiostrepton and its derivatives interfere with the eukaryotic proteasome, a multimeric protease complex that is important for the degradation of ubiquitinated proteins. Here, we report that the thiostrepton-based compounds are active against chloroquine-sensitive and -resistant Plasmodium falciparum , where they rapidly eliminate parasites before DNA replication. The minor parasite fraction that escapes the fast killing of the first replication cycle is arrested in the schizont stage of the following cycle, displaying a delayed-death phenotype. Thiostrepton further exhibits gametocytocidal activity by eliminating gametocytes, the sexual precursor cells that are crucial for parasite transmission to the mosquito. Compound treatment results in an accumulation of ubiquitinated proteins in the blood stages, indicating an effect on the parasite proteasome. In accordance with these findings, expression profiling revealed that the proteasome is present in the nucleus and cytoplasm of trophozoites, schizonts, and gametocytes. In conclusion, thiostrepton derivatives represent promising candidates for malaria therapy by dually acting on two independent targets, the parasite proteasome and the apicoplast, with the capacity to eliminate both intraerythrocytic asexual and transmission stages of the parasite.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3