Author:
Chen Chao-Hsien,Huang Chiang-Ching,Chung Tsao-Chuen,Hu Rouh-Mei,Huang Yi-Wei,Yang Tsuey-Ching
Abstract
ABSTRACTKJ09C, a multidrug-resistant mutant ofStenotrophomonas maltophiliaKJ, was generated byin vitroselection with chloramphenicol. The multidrug-resistant phenotype of KJ09C was attributed to overexpression of a resistance nodulation division (RND)-type efflux system encoded by an operon consisting of five genes:smeU1,smeV,smeW,smeU2, andsmeX. Proteins encoded bysmeV,smeW, andsmeXwere similar to the membrane fusion protein, RND transporter, and outer membrane protein, respectively, of known RND-type systems. The proteins encoded bysmeU1andsmeU2were found to belong to the family of short-chain dehydrogenases/reductases. Mutant KJ09C exhibited increased resistance to chloramphenicol, quinolones, and tetracyclines and susceptibility to aminoglycosides; susceptibility to β-lactams and erythromycin was not affected. The expression of thesmeU1-V-W-U2-Xoperon was regulated by the divergently transcribed LysR-type regulator genesmeRv. Overexpression of the SmeVWX pump contributed to the acquired resistance to chloramphenicol, quinolones, and tetracyclines. Inactivation ofsmeVandsmeWcompletely abolished the activity of the SmeVWX pump, whereas inactivation ofsmeXalone decreased the activity of the SmeVWX pump. The enhanced aminoglycoside susceptibility observed in KJ09C resulted from SmeX overexpression.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献