Author:
Wang Dong,Xue Haiying,Wang Yiwen,Yin Ruochun,Xie Fang,Luo Li
Abstract
ABSTRACTRhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified inAzorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation onSesbania rostrata. However, its functions in a typical rhizobium such asSinorhizobium melilotiremain unclear. Here we found that theS. melilotiresponse regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant ofntrXformed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with thentrXmutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant ofntrYshowed a phenotype similar to that of the parent strain. These findings demonstrate that theS. melilotiNtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology