Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides

Author:

Burch C L1,Danaher R J1,Stein D C1

Affiliation:

1. Department of Microbiology, University of Maryland, College Park 20742, USA.

Abstract

Individual cells of Neisseria gonorrhoeae may express a single lipooligosaccharide (LOS) component on their cell surfaces, or they may simultaneously express multiple LOS structures. Strain FA19 expresses LOS components that react with monoclonal antibodies (MAbs) 2-1-L8 and 1B2. The genetic locus responsible for this phenotype in FA19 was identified by isolating a clone that is able to impart the ability to simultaneously express both LOS molecules to strain 1291, a strain expressing only the MAb 1B2-reactive LOS. This clone, pCLB1, was characterized, and the gene responsible for the expression of both LOS components was determined to be lsi2. DNA sequence analysis of lsi2(Fa19) indicates that there are several differences between the DNA sequences of lsi2(FA19) and lsi2(1291). The region responsible for the LOS-specific phenotype change in lsi2(FA19) was identified by deletion and transformation analysis, mapping to a polyguanine tract within lsi2 where lsi2(FA19) possesses a +2 frameshift relative to lsi2(1291). The polyguanine tract in lsi2(FA19) was modified by site-directed mutagenesis to change the sequence to GGGAGGTGGCGGA to prevent frameshifting during DNA replication, transcription, and/or translation. Transformants of strain 1291 containing this DNA sequence express a single MAb 2-1-L8-reactive LOS component, the same phenotype exhibited by lsi2-defective strains. These data indicate that FA19 is able to generate a small amount of functional Lsi2 protein via transcriptional and/or translational frameshifting, and this limited amount of protein allows for the expression of MAb 1B2-reactive LOS molecules.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3