Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli

Author:

Fermér C1,Swedberg G1

Affiliation:

1. Department of Pharmaceutical Biosciences, Division of Microbiology, Faculty of Pharmacy, Uppsala University, Sweden.

Abstract

Previously, the effects of three point mutations (at amino acid positions 31, 84, and 194) in the gene coding for a sulfonamide-resistant dihydropteroate synthase of Neisseria meningitidis were analyzed by site-directed mutagenesis. Changes at positions 31 and 194 abolished the phenotypic expression of sulfonamide resistance, while a change at position 84 appeared to be neutral. These studies are here extended to correlate the alterations in phenotype with effects on enzyme kinetics by expressing the cloned meningococcal genes in an Escherichia coli strain that had its dhps gene partially deleted and replaced by a resistance determinant. The most dramatic effects were produced by mutations at position 31. A change from the Leu found in the resistant isolate to a Phe (the residue found in sensitive isolates) led to a 10-fold decrease in the Km and a concomitant drop in the Ki. Changes at position 194 also affected both the Km and Ki but not to the same extent as mutations at position 31. Changing position 84 altered the Km only slightly but significantly. This latter change was interpreted as a compensatory change modulating the function of the enzyme. In another type of resistance gene, 2 amino acid residues, proposed to be an insertion, were deleted, resulting in a sensitive enzyme. However, the resulting Km was raised 10-fold, suggesting that compensatory changes have accumulated in this type of resistance determinant as well. This resistance gene differs by as much as 10% from the sensitive isolates, which makes identification of important mutations difficult.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference31 articles.

1. Initiation of protein synthesis without formylation in a mutant of Escherichia coli that grows in the absence of tetrahydrofolate;Baumstark B. R.;J. Bacteriol.,1977

2. Studies of Iysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli;Bertani G.;J. Bacteriol.,1951

3. Crystalline dihydropteroylglutamic acid;Blakley R. I.;Nature (London),1960

4. The biosynthesis of folic acid. II. Inhibition by sulfonamides;Brown G. M.;J. Biol. Chem.,1962

5. The dihydropteroate synthase gene, folP, is near the leucine tRNA gene, leuU, on the Escherichia coli chromosome;Dallas W. S.;J. Bacteriol.,1993

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3