FigA, a Putative Homolog of Low-Affinity Calcium System Member Fig1 in Saccharomyces cerevisiae, Is Involved in Growth and Asexual and Sexual Development in Aspergillus nidulans

Author:

Zhang Shizhu,Zheng Hailin,Long Nanbiao,Carbó Natalia,Chen Peiying,Aguilar Pablo S.,Lu Ling

Abstract

ABSTRACTCalcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. InSaccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 fromS. cerevisiae, was functionally characterized in the filamentous fungusAspergillus nidulans. Loss offigAresulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACSmidA. Interestingly, in afigAdeletion mutant, adding extracellular Ca2+rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed thatfigAdeletion sharply decreased the expression ofbrlAandnsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system inA. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3