Assay for 5′ Noncoding Region Analysis of All Human Rhinovirus Prototype Strains

Author:

Kiang David12,Kalra Ishmeet12,Yagi Shigeo1,Louie Janice K.1,Boushey Homer3,Boothby John2,Schnurr David P.1

Affiliation:

1. Viral and Rickettsial Disease Laboratories, California State Department of Public Health, Richmond, California 94804

2. Department of Biological Sciences, San José State University, San José, California 95192

3. Department of Medicine, University of California San Francisco, San Francisco, California 94143

Abstract

ABSTRACT Increasing recognition of the association of rhinovirus with severe lower respiratory tract illnesses has clarified the need to understand the relationship between specific serotypes of rhinovirus and their clinical consequences. To accomplish this, a specific and sensitive assay to detect and serotype rhinovirus directly from clinical specimens is needed. Traditional methods of serotyping using culture and serum neutralization are time-consuming, limited to certain reference laboratories, and complicated by the existence of over 100 serotypes of human rhinoviruses (HRVs). Accordingly, we have developed a sequence-based assay that targets a 390-bp fragment accounting for approximately two-thirds of the 5′ noncoding region (NCR). Our goal was to develop an assay permitting amplification of target sequences directly from clinical specimens and distinction among all 101 prototype strains of rhinoviruses. We determined the sequences of all 101 prototype strains of HRV in this region to enable differentiation of virus genotypes in both viral isolates and clinical specimens. We evaluated this assay in a total of 101 clinical viral isolates and 24 clinical specimens and compared our findings to genotyping results using a different region of the HRV genome (the VP4-VP2 region). Five specimens associated with severe respiratory disease in children did not correlate with any known serotype of rhinovirus and were found to belong to a novel genogroup of rhinovirus, genogroup C. Isolates were also found that corresponded to the genogroup A2 variant identified in New York and Australia and two other novel group A clusters (GAC1 and GAC2).

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3