Deletion of cgR_1596 and cgR_2070, Encoding NlpC/P60 Proteins, Causes a Defect in Cell Separation in Corynebacterium glutamicum R

Author:

Tsuge Yota12,Ogino Hidetaka1,Teramoto Haruhiko1,Inui Masayuki1,Yukawa Hideaki12

Affiliation:

1. Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan

2. Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan

Abstract

ABSTRACT In previous work, random genome deletion mutants of Corynebacterium glutamicum R were generated using the insertion sequence (IS) element IS 31831 and the Cre/ loxP excision system. One of these mutants, C. glutamicum strain RD41, resulting from the deletion of a 10.1-kb genomic region (ΔcgR_1595 through cgR_1604) from the WT strain, showed cell elongation, and several lines appeared on the cell surface (bamboo shape). The morphological changes were suppressed by overexpression of cgR_1596. Single disruption of cgR_1596 in WT C. glutamicum R resulted in morphological changes similar to those observed in the RD41 strain. CgR_1596 has a predicted secretion signal peptide in the amino-terminal region and a predicted NlpC/P60 domain, which is conserved in cell wall hydrolases, in the carboxyl-terminal region. In C. glutamicum R, CgR_0802, CgR_1596, CgR_2069, and CgR_2070 have the NlpC/P60 domain; however, only simultaneous disruption of cgR_1596 and cgR_2070, and not cgR_2070 single disruption, resulted in cell growth delay and more severe morphological changes than disruption of cgR_1596. Transmission electron microscopy revealed multiple septa within individual cells of cgR_1596 single and cgR_1596-cgR_2070 double disruptants. Taken together, these results suggest that cgR_1596 and cgR_2070 are involved in cell separation and cell growth in C. glutamicum .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3