rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation

Author:

Sulciner D J1,Irani K1,Yu Z X1,Ferrans V J1,Goldschmidt-Clermont P1,Finkel T1

Affiliation:

1. Cardiology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA.

Abstract

The signal transduction pathway leading to the activation of the transcription factor NF-kappaB remains incompletely characterized. We demonstrate that in HeLa cells, transient expression of a constitutively active mutant of the small GTP-binding protein rac1 (V12rac1) leads to a significant increase in NF-kappaB transcriptional activity. In addition, expression of a dominant-negative rac1 mutant (N17rac1) inhibits basal and interleukin 1beta-stimulated NF-kappaB activity. Gel shift analysis using nuclear extract prepared from HeLa cells infected with a recombinant adenovirus encoding N17rac1 (Ad.N17racl) showed reduced levels of cytokine-stimulated DNA binding to a consensus NF-kappaB binding site. We demonstrate that rac proteins function downstream of ras proteins in the activation of NF-kappaB. In addition, V12rac1 stimulation of NF-kappaB activity is shown to be independent of the ability of rac proteins to activate the family of c-jun amino-terminal kinases. In an effort to further explore how rac proteins might regulate NF-kappaB activity, we demonstrate that expression of V12rac1 in HeLa cells or stimulation with cytokine results in a significant increase in intracellular reactive oxygen species (ROS). Treatment of cells with either of two chemically unrelated antioxidants inhibits the rise in ROS that occurs following V12rac1 expression as well as the ability of V12rac1 to stimulate NF-kappaB activity. These results suggest that in HeLa cells, rac1 regulates intracellular ROS production and that rac proteins function as part of a redox-dependent signal transduction pathway leading to NF-kappaB activation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3