Affiliation:
1. The Rockefeller University, New York, New York 10021, USA.
Abstract
The three budding yeast CLN genes appear to be functionally redundant for cell cycle Start: any single CLN gene is sufficient to promote Start, while the cln1 cln2 cln3 triple mutant is Start defective and inviable. Both quantitative and apparently qualitative differences between CLN genes have been reported, but available data do not in general allow distinction between qualitative functional differences as opposed to simply quantitative differences in expression or function. To determine if there are intrinsic qualitative differences between Cln proteins, we compared CLN2, CLN3, and crippled (but still partially active) CLN2 genes in a range of assays that differentiate genetically between CLN2 and CLN3. The results suggest that different potencies of Cln2, Cln3, and Cln2 mutants in functional assays cannot be accounted for by a simple quantitative model for their action, since Cln3 is at least as active as Cln2 and much more active than the Cln2 mutants in driving Swi4/Swi6 cell cycle box (SCB)-regulated transcription and cell cycle initiation in cln1 cln2 cln3 bck2 strains, but Cln3 has little or no activity in other assays in which Cln2 and the Cln2 mutants function. Differences in Cln protein abundance are unlikely to account for these results. Cln3-associated kinase is therefore likely to have an intrinsic in vivo substrate specificity distinct from that of Cln2-associated kinase, despite their functional redundancy. Consistent with the idea that Cln3 may be the primary transcriptional activator of CLN1, CLN2, and other genes, the activation of CLN2 transcription was found to be sensitive to the gene dosage of CLN3 but not to the gene dosage of CLN2.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference51 articles.
1. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins;Amon A.;Cell,1993
2. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. Wiley Interscience New York.
3. Negative regulation of G1 and G2 by S-phase cyclins of Saccharomyces cerevisiae;Basco R. D.;Mol. Cell. Biol.,1995
4. Genetic analysis of Cln/Cdc28 regulation of cell morphogenesis in budding yeast;Benton B. K.;EMBO J.,1993
5. .Breeden L. Personal communication.
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献