Aminoglycoside Heteroresistance in Acinetobacter baumannii AB5075

Author:

Anderson Sarah E.12,Sherman Edgar X.123,Weiss David S.12345,Rather Philip N.125

Affiliation:

1. Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA

2. Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA

3. Emory Vaccine Center, Emory University, Atlanta, Georgia, USA

4. Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA

5. Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA

Abstract

Acinetobacter baumannii has become an important pathogen in hospitals worldwide, where the incidence of these infections has been increasing. A. baumannii infections have become exceedingly difficult to treat due to a rapid increase in the frequency of multidrug- and pan-resistant isolates. This has prompted the World Health Organization to list A. baumannii as the top priority for the research and development of new antibiotics. This study reports for the first time a detailed analysis of aminoglycoside heteroresistance in A. baumannii . We define the mechanistic basis for heteroresistance, where the aadB(ant2″)Ia gene encoding an aminoglycoside adenylyltransferase becomes highly amplified in a RecA-dependent manner. Remarkably, this amplification of 20 to 40 copies occurs stochastically in 1/200 cells in the absence of antibiotic selection. In addition, we provide evidence for a second RecA-independent mechanism for aminoglycoside heteroresistance. This study reveals that aminoglycoside resistance in A. baumannii is far more complex than previously realized and has important implications for the use of aminoglycosides in treating A. baumannii infections.

Funder

HHS | National Institutes of Health

U.S. Department of Veterans Affairs

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3