Assembly of gag-beta-galactosidase proteins into retrovirus particles

Author:

Jones T A1,Blaug G1,Hansen M1,Barklis E1

Affiliation:

1. Vollum Institute for Advanced Biomedical Research, Portland, Oregon.

Abstract

We studied the expression of beta-galactosidase (beta-gal) and 15 gag-beta-gal fusion proteins in the presence of Moloney murine leukemia virus wild-type core (gag) proteins. Analysis indicated that proteins retaining the amino-terminal portion of gag through the capsid protein-coding region were incorporated into retrovirus particles. Proteins which deleted portions of the capsid protein were assembled into virions at low efficiency, indicating the importance of capsid protein interactions in retrovirus assembly. Fusion proteins which retained the amino-terminal matrix protein of the gag polyprotein but which lacked the capsid protein were released efficiently from cells in a nonviral form. The nonviral form was characterized by a high sedimentation coefficient and a low density, suggestive of membrane vesicles. While beta-gal was present in the cytoplasm of expressing cells, all fusion constructs were associated with cellular membranes. gag-beta-gal proteins which were capable of release from cells demonstrated a two-component immunofluorescence staining pattern consisting of a circle of fluorescence around the nucleus and a punctate pattern of staining throughout the remainder of the cell. Interestingly, fusions within the matrix protein were trapped intracellularly and yielded distinct perinuclear staining patterns, possibly localizing to the rough endoplasmic reticulum and/or Golgi. This observation suggests that Moloney murine leukemia virus gag proteins travel to the plasma membrane by vesicular transport associated with the cytoplasmic face of intracellular vesicles.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3