Cytomegalovirus-Induced Effector T Cells Cause Endothelial Cell Damage

Author:

van de Berg Pablo J. E. J.,Yong Si-La,Remmerswaal Ester B. M.,van Lier René A. W.,ten Berge Ineke J. M.

Abstract

ABSTRACTHuman cytomegalovirus (CMV) infection has been linked to inflammatory diseases that involve vascular endothelial cell damage, but definitive proof for a direct cytopathic effect of CMV in these diseases is lacking. CMV infection is associated with a strong increase in both CD4+and CD8+T cells with constitutive effector functions that can perpetuate systemic inflammation. We investigated whether CMV-induced immune responses could lead to endothelial damage in humans. We found that terminally differentiated effector CD4+and CD8+T cells, formed during primary CMV infection and maintained throughout latency, express high levels of CX3CR1 and CXCR3. The ligands of these receptors, fractalkine and IP-10, respectively, are expressed by activated endothelial cells. Peripheral blood mononuclear cells (PBMC) stimulated with CMV antigen produced soluble factors that stimulated endothelial cells to produce both chemokines. Finally, effector cells migrated in a fractalkine- and IP-10-dependent fashion to activated endothelial cells and induced apoptosis in endothelial cells that were stimulated by supernatant from CMV-activated PBMC. Our findings offer an explanation for the accumulation of highly differentiated T cells near to the endothelium in CMV-infected individuals that may result in endothelial damage.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3