Novel Isolate of Bacillus thuringiensis subsp. thuringiensis That Produces a Quasicuboidal Crystal of Cry1Ab21 Toxic to Larvae of Trichoplusia ni

Author:

Swiecicka Izabela1,Bideshi Dennis K.23,Federici Brian A.24

Affiliation:

1. Department of Microbiology, Institute of Biology, University of Bialystok, 20B Swierkowa Street, PL15-950 Bialystok, Poland

2. Department of Entomology, University of California, Riverside, Riverside, California 92521

3. Department of Natural and Mathematical Science, California Baptist University, Riverside, California 92504

4. Interdepartmental Graduate Programs in Genetics and Microbiology, University of California, Riverside, Riverside, California 92521

Abstract

ABSTRACT A new isolate (IS5056) of Bacillus thuringiensis subsp. thuringiensis that produces a novel variant of Cry1Ab, Cry1Ab21, was isolated from soil collected in northeastern Poland. Cry1Ab21 was composed of 1,155 amino acids and had a molecular mass of 130.5 kDa, and a single copy of the gene coding for this endotoxin was located on a ∼75-kbp plasmid. When synthesized by the wild-type strain, Cry1Ab21 produced a unique, irregular, bipyramidal crystal whose long and short axes were both approximately 1 μm long, which gave it a cuboidal appearance in wet mount preparations. In diet incorporation bioassays, the 50% lethal concentrations of the crystal-spore complex were 16.9 and 29.7 μg ml −1 for second- and fourth-instar larvae of the cabbage looper, Trichoplusia ni , respectively, but the isolate was essentially nontoxic to larvae of the beet armyworm, Spodoptera exigua . A bioassay of autoclaved spore-crystal preparations showed no evidence of β-exotoxin activity, indicating that toxicity was due primarily to Cry1Ab21. Studies of the pathogenesis of isolate IS5056 in second-instar larvae of T. ni showed that after larval death the bacterium colonized and subsequently sporulated extensively throughout the cadaver, suggesting that other bacteria inhabiting the midgut lumen played little if any role in mortality. As T. ni is among the most destructive pests of vegetable crops in North America and has developed resistance to B. thuringiensis , this new isolate may have applied value.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3