Effect of Culture Conditions on Ergosterol as an Indicator of Biomass in the Aquatic Hyphomycetes

Author:

Charcosset Jean-Yves1,Chauvet Eric1

Affiliation:

1. Centre d'Ecologie des Systèmes Aquatiques Continentaux, 31055 Toulouse Cedex 04, France

Abstract

ABSTRACT Ergosterol is a membrane component specific to fungi that can be used to estimate fungal biomass using appropriate factors of conversion. Our objectives were to determine the limits of use of ergosterol content as a measure of biomass for aquatic hyphomycetes, and to evaluate a previously established ergosterol-to-biomass conversion factor. We varied inoculum quality, growth medium, and degree of shaking of four aquatic hyphomycete species. In cultures inoculated with homogenized mycelium, we found a significant effect of shaking condition and culture age on ergosterol content. In liquid cultures with defined medium, ergosterol content reached 10 to 11 μg/mg of mycelium (dry mass) and varied by factors of 2.2 during exponential growth and 1.3 during stationary phase. The increase in ergosterol content during exponential phase could be attributed, at least in part, to rapid depletion of glucose. Oxygen availability to internal hyphae within the mycelial mass is also responsible for the differences found between culture conditions. Ergosterol concentration ranged from 0.8 to 1.6 μg/mg in static cultures inoculated with agar plugs. Ergosterol content varied by a factor of 4 in two media of different richnesses. For different combinations of these parameters, strong ( r 2 = 0.83 to 0.98) and highly significant ( P ≪ 0.001) linear relationships between ergosterol and mycelial dry mass (up to 110 mg) were observed. Overall, the ergosterol content varied by a factor of 14 (0.8 to 11 mg/g). These results suggest that care must be taken when the ergosterol content is used to compare data generated in different field environments.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3