Proteasome-Independent Activation of Nuclear Factor κB in Cytoplasmic Extracts from Human Endothelial Cells by Rickettsia rickettsii

Author:

Sahni Sanjeev K.1,Van Antwerp Daniel J.2,Eremeeva Marina E.3,Silverman David J.3,Marder Victor J.14,Sporn Lee Ann14

Affiliation:

1. Vascular Medicine Unit, Department of Medicine,1 and

2. Laboratory of Genetics, Salk Institute, La Jolla, California 920372; and

3. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 212013

4. Department of Pathology and Laboratory Medicine,4 University of Rochester School of Medicine and Dentistry, Rochester, New York 14642;

Abstract

ABSTRACT Interaction of many infectious agents with eukaryotic host cells is known to cause activation of the ubiquitous transcription factor nuclear factor κB (NF-κB) (U. Siebenlist, G. Franzoso, and K. Brown, Annu. Rev. Cell Biol. 10:405–455, 1994). Recently, we reported a biphasic pattern of NF-κB activation in cultured human umbilical vein endothelial cells consequent to infection with Rickettsia rickettsii , an obligate intracellular gram-negative bacterium and the etiologic agent of Rocky Mountain spotted fever (L. A. Sporn, S. K. Sahni, N. B. Lerner, V. J. Marder, D. J. Silverman, L. C. Turpin, and A. L. Schwab, Infect. Immun. 65:2786–2791, 1997). In the present study, we describe activation of NF-κB in a cell-free system, accomplished by addition of partially purified R. rickettsii to endothelial cell cytoplasmic extracts. This activation was rapid, reaching maximal levels at 60 min, and was dependent on the number of R. rickettsii organisms added. Antibody supershift assays using monospecific antisera against NF-κB subunits (p50 and p65) confirmed the authenticity of the gel-shifted complexes and identified both p50-p50 homodimers and p50-p65 heterodimers as constituents of the activated NF-κB pool. Activation occurred independently of the presence of endothelial cell membranes and was not inhibited by removal of the endothelial cell proteasome. Lack of involvement of the proteasome was further confirmed in assays using the peptide-aldehyde proteasome inhibitor MG 132. Activation was not ATP dependent since no change in activation resulted from addition of an excess of the unhydrolyzable ATP analog ATPγS, supplementation with exogenous ATP, or hydrolysis of endogenous ATP with ATPase. Furthermore, Western blot analysis before and after in vitro activation failed to demonstrate phosphorylation of serine 32 or degradation of the cytoplasmic pool of IκBα. This lack of IκBα involvement was supported by the finding that R. rickettsii can induce NF-κB activation in cytoplasmic extracts prepared from T24 bladder carcinoma cells and human embryo fibroblasts stably transfected with a superrepressor phosphorylation mutant of IκBα, rendering NF-κB inactivatable by many known signals. Thus, evidence is provided for a potentially novel NF-κB activation pathway wherein R. rickettsii may interact with and activate host cell transcriptional machinery independently of the involvement of the proteasome or known signal transduction pathways.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mediterranean Spotted Fever: Current Knowledge and Recent Advances;Tropical Medicine and Infectious Disease;2021-09-24

2. The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections;Bacteria and Intracellularity;2020-02-20

3. R ickettsia;Bergey's Manual of Systematics of Archaea and Bacteria;2019-09-16

4. The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections;Microbiology Spectrum;2019-04-12

5. Rickettsia rickettsii Whole-Cell Antigens Offer Protection against Rocky Mountain Spotted Fever in the Canine Host;Infection and Immunity;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3