Population pharmacokinetics of ceftazidime in cystic fibrosis patients analyzed by using a nonparametric algorithm and optimal sampling strategy

Author:

Vinks A A1,Mouton J W1,Touw D J1,Heijerman H G1,Danhof M1,Bakker W1

Affiliation:

1. Hague Hospitals Central Pharmacy, The Netherlands.

Abstract

Postinfusion data obtained from 17 patients with cystic fibrosis participating in two clinical trials were used to develop population models for ceftazidime pharmacokinetics during continuous infusion. Determinant (D)-optimal sampling strategy (OSS) was used to evaluate the benefits of merging four maximally informative sampling times with population modeling. Full and sparse D-optimal sampling data sets were analyzed with the nonparametric expectation maximization (NPEM) algorithm and compared with the model obtained by the traditional standard two-stage approach. Individual pharmacokinetic parameter estimates were calculated by weighted nonlinear least-squares regression and by maximum a posteriori probability Bayesian estimator. Individual parameter estimates obtained with four D-optimally timed serum samples (OSS4) showed excellent correlation with parameter estimates obtained by using full data sets. The parameters of interest, clearance and volume of distribution, showed excellent agreement (R2 = 0.89 and R2 = 0.86). The ceftazidime population models were described as two-compartment kslope models, relating elimination constants to renal function. The NPEM-OSS4 model was described by the equations kel = 0.06516+ (0.00708.CLCR) and V1 = 0.1773 +/- 0.0406 liter/kg where CLCR is creatinine clearance in milliliters per minute per 1.73 m2, V1 is the volume of distribution of the central compartment, and kel is the elimination rate constant. Predictive performance evaluation for 31 patients with data which were not part of the model data sets showed that the NPEM-ALL model performed best, with significantly better precision than that of the standard two-stage model (P < 0.001). Predictions with the NPEM-OSS4 model were as precise as those with the NPEM-ALL model but slightly biased (-2.2 mg/liter; P < 0.01). D-optimal monitoring strategies coupled with population modeling results in useful and cost-effective population models and will be of advantage in clinical practice, as it allows pharmacokinetic-pharmacodynamic modeling with sparse data, thus describing the relationship between ceftazidime exposure and response in the treatment of acute exacerbations in patients with cystic fibrosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference27 articles.

1. Continuous intravenous treatment at home of respiratory tract infections with ceftazidime using a portable pump in cystic fibrosis patients; a multicentre study;Bakker W.;Ned. Tijdschr. Geneeskd.,1993

2. Optimal sampling times for pharmacokinetic experiments;D'Argenio D. Z.;J. Pharmacokinet. Biopharm.,1981

3. A program package for simulation and parameter estimation in pharmacokinetic systems;D'Argenio D. Z.;Comput. Programs Biomed.,1979

4. D'Argenio D. Z. and A. Schumitzky. 1992. ADAPT II users guide. Biomedical Simulations Resource University of Southern California Los Angeles.

5. Population pharmacokinetic models. Measures of central tendency;Dodge W. F.;Drug Invest.,1993

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3